

Big Data Storage Problems and Solutions Elephant in the Room Problem.

Dr. Abzetdin ADAMOV

Director, Center for Data Analytics Research School of IT & Engineering ADA University

aadamov@ada.edu.az

19 May 2018, BDDB2018, ADA University

BIG DATA is a PROBLEM WHERE is SOLUTION?

nov, CeDAR, ADA University

Digital Universe Volume

Every day now we create as much information as we did from the dawn of civilization up until 2003

- 2003 5 exabytes from beginning of civilization
- 2005 130 exabytes
- 2008 480.000 petabytes (PB)
- 2009 800.000 PB
- 2010 1200 000 PB or 1.2 zettabyte (ZB)
- 2011 1.8 ZB
- 2012 2.7 ZB
- 2014~6.2 ZB
- 2015 ~ 10 ZB
- 2017~16 ZB
- 2018 > 20 ZB
- Expected to reach 44 ZB by 2020

Where Data Comes From

Data is produced by:

- People
 - Social Media, Public Web, Smartphones, ...
- Organizations (Employer)
 - OLTP, OLAP, BI, ...
- Machines
 - IoT, Satellites, Vehicles, Science, ...

Modern Data Sources

Internet of Anything (IoAT)

- Oil Rigs, Wind Turbines, Cars
- Weather Stations, Smart Grids
- RFID Tags, Beacons, Wearables

User Generated Content (Web & Mobile)

- Twitter, Facebook, Snapchat, YouTube
- Clickstream, Ads, User Engagement
- Payments: Paypal, Venmo

BIG DATA Problem

BIG DATA = 3V

Volume

Velocity

Variety

BIG DATA Management Requirements

- 1. Storage Capacity
- 2. Processing (Computation) Power
- 3. Data Transfer Speed

WHY DATA TRANSFER?

Addressing Data – Hard Disk Capacity

Addressing Data – Storage Cost

Transistors per CPU

Computation Power CPU and GPU

Data Growth vs. Processing Power

Data Growth 40% per year

CPU Processing Power

Addressing Data – Transfer Rate

BIG DATA and TRADITIONAL SYSTEMS

101

1001

10

110

001

0111016

0011200 00101100 011000 01 011111 01101110 01110011 01110100 0" 211000 0110100 01120011 00100000 101001 01107110 00101110 00100000 DOLOLILO LEODLEIO DILLOLLO LI 0 11110110 00000100 11110110 010 0 01110100 01000011 01101111 0 00100000 01100101 0111000 01. 01000011 011000010 01101001 011 100000 01101111 01101101 0111. 01100 01110011 01110100 01101 0010110 11000011 00000000 001000 000000100 11001110 01000000 0 01100010 01100101 01110010 01. 01100101 01100100 00100000 01100. 1100001 01110010 010111001 0000000 Adamo 00000 01000010 01000010 01000010 000000

and all all and

017 000 101 010 010 0 10 01 10 001 0 01100 011101 1110010 100101 0000 0100000 1000 01100001 10 110011 0010000 10200000 0221001 STOOLS OF

• •

The "Big Data" Problem Statement

Problem

A single machine cannot process or even store all the data!
Solution

Distribute data over many computers (large clusters)
Difficulty

- How to split work across machines?
- Moving data over network is expensive
- How to deal with failures?
- How to deal with slow machines?

Hadoop Ecosystem Components

Hadoop Input/Output Model

Hadoop Reads/Writes blocks sequentially, not in parallel. Its why Hadoop does not affect IO performance significantly. SOLUTION is Data Striping technique...

BIG DOES NOT MEAN SLOW

3 12

3140

DAS or SAN/NAS? Direct Attached Storage or Storage Area Network

nov, CeDAR, ADA University

Problem with Keeping Data Live

Network throughput is Bottleneck

Cons with SAN/NAS

- Taking server's components apart decreases performance and Data transfer rates, at the same time increases workloads with high input/output operations;
- To run any query all the data has to be moved to the processing unit before any filtering can occur;
- Generally, requires same type and same size SAS expensive drives;
- Even "NAS needs less hardware", MapReduce jobs will need to store intermediate data in local storage.

Distributed vs Traditional Computing

Traditional Computing

Distributed Computing

HDFS Prefers DAS

DAS

Compute Nodes (Servers) with DAS are part of HDFS

HDFS Hadoop Distributed File System

DAS

RAID or LVM / JBOD Why Hadoop Doesn't Love RAID?

nov, CeDAR, ADA University

Truth about RAID

RAID 0

RAID 0, the data is striped (split/divided) across multiple disk drives.

Redundancy – NO Performance – YES Space Efficiency - YES RAID 1

RAID 1 provides redundancy by storing exact copy of data in one disk on another disk

> Redundancy – YES Performance – NO Space Efficiency - NO Adamov, CeDAR, ADA University

RAID 5, data and parity is used and are striped across the disks.

Disk 1

RAID 5

A2

B1

Cp

D2

Ap

B2

C2

Dp

Disk 2

A1

Bp

C1

D1

Disk 0

Redundancy – YES Performance – NO NO Space Efficiency – NO YES

Cons of RAID

DISK 1 – 100GB

- Fault-tolerance There is no fault-tolerance in RAID 0
- RAID technique is not reliable disks tend to fail. More discs in the array there is more chance for fail;
- Lagging performance RAID delivers data at the rate of the slowest disk in the array. Disk speeds can vary up to 20%
- Space Efficiency Total capacity is calculated based on the size of smallest drive.

AAdamov, CeDAR, ADA University

DISK 2 – 200GB

DISK 3 – 500GB

300GB

TOTAL SPACE = 8

LVM – Logical Volume Manager

LVM vs. RAID

- RAID requires all physical drives should have same size;
- RAID is a physical grouping of disks to present them to an OS as one logical device;
- RAID is used for Redundancy or Performance or a combination of the two;
- RAID is NOT any kind of Data backup solution
- RAID-0 is not scalable what means RAID-0 group cannot grow without affected the Data

- LVM is a logical layer to create, manipulate and expand a logical presentation of a disk device(s) to an OS.
- LVM allows to use entire space of each drive if they are different sizes.
- LVM enables growth extending Logical Volumes through adding new drives without affecting the Data;
- LVM is a disk management approach that allows to create, extend, reduce, delete or resize the volume groups or logical volumes;
- LVM can be used to manage a large pool of disks what is called JBOD (Just-a-bunch-of-AAdamov, CeDAR, AD/Disk)ity

Why Hadoop is against RAID?

- The redundancy that RAID provides is not needed, since HDFS handles it by replication between nodes;
- JBOD (Just a Bunch Of Disks) configuration recommended for HDFS, mostly is faster then RAID 0;
- If a disk fails in JBOD, HDFS can continue to operate without it, but in RAID if a disk fails the whole array becomes unavailable.

Distributed Architecture of HDFS

D

CLIENT

Where to write file ADA.txt (blocks A, B, C, D) in HDFS?

NAMENODE

Switch				
		01010		
	00	DN11		
	00	DN12		
	00	DN13		
0000	0 0	DN14		
I	Rack 2			

A – DN32, 11, 14

B – DN01, 22, 23

<u>C – DN</u>12, 02, 04

D – DN34, 12, 14

Big Data and Virtialization

Traditional Architecture

Virtualized Architecture

Distributed Architecture

Computing Facilities at CeDAR

Computing Cluster - the primary component of the CeDAR. This is powerful, scalable and fault-tolerant computing cluster based on distributed architecture, which will operate totally on open-source software.

Characteristics of computing cluster:

- Processing CPU Cores: 102
- Combined Memory: 1,568 TB
- Total Storage: 136 TB

Service ≑	Host ≑	Status 🌲	24-Hour	Response
All \$	Any	All \$		
Ambari	dnode01.cedar.cluster.ada	OK for 2 days	0	Capacity Used: [12.14%, 6.5 GB], Capacity Total: [53.7 GB], path=/us
Ambari	dnode02.cedar.cluster.ada	ок for 2 days	0	Capacity Used: [8.12%, 4.4 GB], Capacity Total: [53.7 GB], path=/usr/
Ambari	dnode03.cedar.cluster.ada	ок for 2 days		Capacity Used: [7.98%, 4.3 GB], Capacity Total: [53.7 GB], path=/usr/
Ambari	dnode04.cedar.cluster.ada			C pac y t ve d: / .7 .7 4.2 GB], Capacity Total: [53.7 GB], path=/usr/
Ambari	dnode05.cedar.cluster.ada	ок for 2 days	0	Capacity Used: [7.65%, 4.1 GB], Capacity Total: [53.7 GB], path=/usr/
Ambari	dnode06.cedar.cluster.ada	ok for 2 days	0	Capacity Used: [7.28%, 3.9 GB], Capacity Total: [53.7 GB], path=/usr/
Ambari	dnode07.cedar.cluster.ada	ok for 2 days	0	Capacity Used: [6.89%, 3.7 GB], Capacity Total: [53.7 GB], path=/usr/
Ambari	dnode08.cedar.cluster.ada	ok for 2 days	0	Capacity Used: [7.47%, 4.0 GB], Capacity Total: [53.7 GB], path=/usr/
Ambari	dnode09.cedar.cluster.ada	ok for 2 days	0	Capacity Used: [7.82%, 4.2 GB], Capacity Total: [53.7 GB], path=/usr/
Ambari	dnode10.cedar.cluster.ada	ok for 2 days	0	Capacity Used: [8.64%, 4.6 GB], Capacity Total: [53.7 GB], path=/usr/
Ambari	dnode11.cedar.cluster.ada	ok for 2 days	0	Capacity Used: [10.50%, 5.6 GB], Capacity Total: [53.7 GB], path=/us
Ambari	dnode12.cedar.cluster.ada	ok for 2 days	0	Capacity Used: [11.62%, 6.2 GB], Capacity Total: [53.7 GB], path=/us
Ambari	dnode13.cedar.cluster.ada	ok for 2 days	0	Capacity Used: [11.43%, 6.1 GB], Capacity Total: [53.7 GB], path=/us
Ambari	dnode14.cedar.cluster.ada	ok for 2 days	0	Capacity Used: [11.61%, 6.2 GB], Capacity Total: [53.7 GB], path=/us
Ambari	dnode15.cedar.cluster.ada	ок AAdamov, CeDAR, ADA for 2 days	University 0	Capacity Used: [12.46%, 6.7 GB], Capacity Total: [53.7 GB], path=/us

But do you have the capacity to refine it?

Q&A

Dr. Abzetdin Adamo

- Email me at:aadamov@ada.edu.az Follow me at:@
- Link to me at: www.linkedin.com/in/arlamov Visit my blog at: aadamov.wordpress.com