
Ramin Orujov 19.05.2018

Structured Streaming and
Continuous Processing in
Apache Spark

Big Data Day Baku 2018 #BDDB2018

About me

Software Developer @ FHN 2008-2009

Azercell Telecom 2009-2016

Software developer 2009-2012

Software dev team lead 2012-2014

Datawarehouse unit head 2014 – 2016

Big Data Engineer @ Luxoft Poland 2017 -

Agenda

Stream Processing Challenges

Structured Streaming in Apache Spark

Programming Model

Output Modes
Handling Late Data

Fault Tolerance

Agenda

Stream Deduplication

Operations on streaming

Triggers

Continuous Processing

Stream Processing
Challenges

Different data formats (json, xml, avro, parquet, binary)

Data can be dirty, late and out of order

Programming complexity

Complex Use Cases - combining streaming with
interactive queries, machine learning, etc

Different storage systems (HDFS, Kafka, NoSQL,
RDBMS, S3, Kinesis, ...)

System failures and restarts

Structured
Streaming

Stream processing on Spark SQL engine

Rich, unified and High level APIs

Rich Ecosystem of data sources

from pyspark.sql import SparkSession

from pyspark.sql.functions import explode

from pyspark.sql.functions import split

spark = SparkSession \

 .builder \

 .appName("StructuredNetworkWordCount") \

 .getOrCreate()

Create DataFrame representing the stream of input lines from connection to localhost:9999

lines = spark \

 .readStream \

 .format("socket") \

 .option("host", "localhost") \

 .option("port", 9999) \

 .load()

Split the lines into words

words = lines.select(

 explode(

 split(lines.value, " ")

).alias("word")

)

Generate running word count

wordCounts = words.groupBy("word").count()

Start running the query that prints the running counts to the console

query = wordCounts \

 .writeStream \

 .outputMode("complete") \

 .format("console") \

 .start()

query.awaitTermination()

Output Modes

Append mode (default) - only the new rows added to the Result Table since the
last trigger will be outputted to the sink.

Complete mode - The whole Result Table will be outputted to the sink after
every trigger. This is supported for aggregation queries.

Update mode - (Spark 2.1.1) Only the rows in the Result Table that were
updated since the last trigger will be outputted to the sink.

Fault Tolerance

Checkpointing

Write ahead logs - WAL

aggDF \

 .writeStream \

 .outputMode("complete") \

 .option("checkpointLocation", "path/to/HDFS/dir") \

 .format("memory") \

 .start()

Aggregations in Windows

words = ... # streaming DataFrame of schema { timestamp: Timestamp, word: String

}

Group the data by window and word and compute the count of each group

windowedCounts = words.groupBy(

 window(words.timestamp, "10 minutes", "5 minutes"),

 words.word

).count()

Handling Late Data and Watermarking

Group the data by window and word and compute the count of each group

windowedCounts = words \

 .withWatermark("timestamp", "10 minutes") \

 .groupBy(

 window(words.timestamp, "10 minutes", "5 minutes"),

 words.word) \

 .count()

Stream
Deduplication

streamingDf = spark.readStream. ...

Without watermark using guid column

streamingDf.dropDuplicates("guid")

With watermark using guid and eventTime columns

streamingDf \

 .withWatermark("eventTime", "10 seconds") \

 .dropDuplicates("guid", "eventTime")

Stream-static joins

With Spark 2.0, Structured Streaming has supported joins (inner join and some type of

outer joins) between a streaming and a static DataFrame/Dataset.

staticDf = spark.read. ...

streamingDf = spark.readStream. ...

streamingDf.join(staticDf, "type") # inner equi-join with a static DF

streamingDf.join(staticDf, "type", "right_join") # right outer join with a static DF

Stream-stream joins

Spark 2.3 added support for stream-stream joins, that is, you can join two streaming

Datasets/DataFrames. The challenge of generating join results between two data streams

is that, at any point of time, the view of the dataset is incomplete for both sides of the

join making it much harder to find matches between inputs. Any row received from one

input stream can match with any future, yet-to-be-received row from the other input

stream.

Stream-stream joins

impressions = spark.readStream. ...

clicks = spark.readStream. ...

Apply watermarks on event-time columns

impressionsWithWatermark = impressions.withWatermark("impressionTime", "2 hours")

clicksWithWatermark = clicks.withWatermark("clickTime", "3 hours")

Stream-stream joins

Join with event-time constraints

impressionsWithWatermark.join(

 clicksWithWatermark,

 expr("""

 clickAdId = impressionAdId AND

 clickTime >= impressionTime AND

 clickTime <= impressionTime + interval 1 hour

 """)

)

Advanced Stateful Operations

Many usecases require more advanced stateful operations than aggregations. For

example, you have to track sessions from data streams of events. For doing such

sessionization, you will have to save arbitrary types of data as state, and perform

arbitrary operations on the state using the data stream events in every trigger. Since

Spark 2.2, this can be done using the operation mapGroupsWithState and the more

powerful operation flatMapGroupsWithState. Both operations allow to apply user-defined

code on grouped Datasets to update user-defined state.

Triggers

unspecified (default micro-batch mode)

Fixed interval micro-batches

One-time micro-batch

Continuous with fixed checkpoint interval

Triggers

Default trigger (runs micro-batch as soon as it can)

df.writeStream \

 .format("console") \

 .start()

ProcessingTime trigger with two-seconds micro-batch interval

df.writeStream \

 .format("console") \

 .trigger(processingTime='2 seconds') \

 .start()

Triggers
One-time trigger

df.writeStream \

 .format("console") \

 .trigger(once=True) \

 .start()

Continuous trigger with one-second checkpointing interval

df.writeStream

 .format("console")

 .trigger(continuous='1 second')

 .start()

Continuous processing

Default micro-batch processing engine which can achieve exactly-once guarantees but

achieve latencies of ~100ms at best.

Continuous processing is a new, experimental streaming execution mode introduced in

Spark 2.3 that enables low (~1 ms) end-to-end latency with at-least-once fault-tolerance

guarantees.

Continuous processing
spark \

 .readStream \

 .format("kafka") \

 .option("kafka.bootstrap.servers", "host1:port1,host2:port2") \

 .option("subscribe", "topic1") \

 .load() \

 .selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)") \

 .writeStream \

 .format("kafka") \

 .option("kafka.bootstrap.servers", "host1:port1,host2:port2") \

 .option("topic", "topic1") \

 .trigger(continuous="1 second") \ # only change in query

 .start()

Continuous processing limitations

Only map-like Dataset/DataFrame operations are supported

All SQL functions are supported except aggregation functions

Non deterministic functions not supported - current_timestamp() and current_date()

Continuous processing limitations

Continuous processing engine launches multiple long-running tasks that continuously

read data from sources, process it and continuously write to sinks. The number of tasks

required by the query depends on how many partitions the query can read from the

sources in parallel. Therefore, before starting a continuous processing query, you must

ensure there are enough cores in the cluster to all the tasks in parallel.

There are currently no automatic retries of failed tasks. Any failure will lead to the query

being stopped and it needs to be manually restarted from the checkpoint.

References

1.Structured Streaming Programming Guide

https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html

2.Structured Streaming In Apache Spark

https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html

3.Apache Spark 2.0: A Deep Dive Into Structured Streaming

https://www.slideshare.net/databricks/a-deep-dive-into-structured-streaming

4.Easy, scalable, fault tolerant stream processing with structured streaming

https://www.slideshare.net/databricks/easy-scalable-fault-tolerant-stream-processing-wi

th-structured-streaming-with-tathagata-das

5.Deep dive into stateful stream processing in structured streaming

https://www.slideshare.net/databricks/deep-dive-into-stateful-stream-processing-in-stru

ctured-streaming-by-tathagata-das

6.Continuous Applications: Evolving Streaming in Apache Spark 2.0

https://databricks.com/blog/2016/07/28/continuous-applications-evolving-streaming-in-

apache-spark-2-0.html

https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html
https://databricks.com/blog/2016/07/28/structured-streaming-in-apache-spark.html
https://www.slideshare.net/databricks/a-deep-dive-into-structured-streaming

References
4.Easy, scalable, fault tolerant stream processing with structured streaming

https://www.slideshare.net/databricks/easy-scalable-fault-tolerant-stream-processing-wi

th-structured-streaming-with-tathagata-das

5.Deep dive into stateful stream processing in structured streaming

https://www.slideshare.net/databricks/deep-dive-into-stateful-stream-processing-in-stru

ctured-streaming-by-tathagata-das

6.Continuous Applications: Evolving Streaming in Apache Spark 2.0

https://databricks.com/blog/2016/07/28/continuous-applications-evolving-streaming-in-

apache-spark-2-0.html

https://www.slideshare.net/databricks/easy-scalable-fault-tolerant-stream-processing-with-structured-streaming-with-tathagata-das
https://www.slideshare.net/databricks/easy-scalable-fault-tolerant-stream-processing-with-structured-streaming-with-tathagata-das
https://www.slideshare.net/databricks/deep-dive-into-stateful-stream-processing-in-structured-streaming-by-tathagata-das
https://www.slideshare.net/databricks/deep-dive-into-stateful-stream-processing-in-structured-streaming-by-tathagata-das
https://databricks.com/blog/2016/07/28/continuous-applications-evolving-streaming-in-apache-spark-2-0.html
https://databricks.com/blog/2016/07/28/continuous-applications-evolving-streaming-in-apache-spark-2-0.html

Streaming is the future of big data

Thanks!
Contact info

https://www.linkedin.com/in/ra
minorujov

https://www.facebook.com/rami
n.orucov

raminorujov@gmail.com

+48 730 063 160

+994 50 231 01 09

https://www.linkedin.com/in/raminorujov
https://www.linkedin.com/in/raminorujov
https://www.facebook.com/ramin.orucov
https://www.facebook.com/ramin.orucov
mailto:raminorujov@gmail.com

