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Stream Processing 
Challenges

Different data formats (json, xml, avro, parquet, binary)

Data can be dirty, late and out of order

Programming complexity

Complex Use Cases - combining streaming with 
interactive queries, machine learning, etc

Different storage systems (HDFS, Kafka, NoSQL, 
RDBMS, S3, Kinesis, ...)

System failures and restarts



Structured 
Streaming

Stream processing on Spark SQL engine 

Rich, unified and High level APIs

Rich Ecosystem of data sources





from pyspark.sql import SparkSession

from pyspark.sql.functions import explode

from pyspark.sql.functions import split

spark = SparkSession \

    .builder \

    .appName("StructuredNetworkWordCount") \

    .getOrCreate()



# Create DataFrame representing the stream of input lines from connection to localhost:9999

lines = spark \

    .readStream \

    .format("socket") \

    .option("host", "localhost") \

    .option("port", 9999) \

    .load()

# Split the lines into words

words = lines.select(

   explode(

       split(lines.value, " ")

   ).alias("word")

)



# Generate running word count

wordCounts = words.groupBy("word").count()

# Start running the query that prints the running counts to the console

query = wordCounts \

    .writeStream \

    .outputMode("complete") \

    .format("console") \

    .start()

query.awaitTermination()





Output Modes

Append mode (default) - only the new rows added to the Result Table since the 
last trigger will be outputted to the sink. 

Complete mode - The whole Result Table will be outputted to the sink after 
every trigger. This is supported for aggregation queries.

Update mode - (Spark 2.1.1) Only the rows in the Result Table that were 
updated since the last trigger will be outputted to the sink. 



Fault Tolerance

Checkpointing 

Write ahead logs - WAL

aggDF \

    .writeStream \

    .outputMode("complete") \

    .option("checkpointLocation", "path/to/HDFS/dir") \

    .format("memory") \

    .start()



Aggregations in Windows

words = ...  # streaming DataFrame of schema { timestamp: Timestamp, word: String 

}

# Group the data by window and word and compute the count of each group

windowedCounts = words.groupBy(

    window(words.timestamp, "10 minutes", "5 minutes"),

    words.word

).count()





Handling Late Data and Watermarking

# Group the data by window and word and compute the count of each group

windowedCounts = words \

    .withWatermark("timestamp", "10 minutes") \

    .groupBy(

        window(words.timestamp, "10 minutes", "5 minutes"),

        words.word) \

    .count()







Stream 
Deduplication

streamingDf = spark.readStream. ...

# Without watermark using guid column

streamingDf.dropDuplicates("guid")

# With watermark using guid and eventTime columns

streamingDf \

  .withWatermark("eventTime", "10 seconds") \

  .dropDuplicates("guid", "eventTime")



Stream-static joins

With Spark 2.0, Structured Streaming has supported joins (inner join and some type of 

outer joins) between a streaming and a static DataFrame/Dataset.

staticDf = spark.read. ...

streamingDf = spark.readStream. ...

streamingDf.join(staticDf, "type")  # inner equi-join with a static DF

streamingDf.join(staticDf, "type", "right_join")  # right outer join with a static DF



Stream-stream joins

Spark 2.3 added support for stream-stream joins, that is, you can join two streaming 

Datasets/DataFrames. The challenge of generating join results between two data streams 

is that, at any point of time, the view of the dataset is incomplete for both sides of the 

join making it much harder to find matches between inputs. Any row received from one 

input stream can match with any future, yet-to-be-received row from the other input 

stream. 



Stream-stream joins

impressions = spark.readStream. ...

clicks = spark.readStream. ...

# Apply watermarks on event-time columns

impressionsWithWatermark = impressions.withWatermark("impressionTime", "2 hours")

clicksWithWatermark = clicks.withWatermark("clickTime", "3 hours")



Stream-stream joins

# Join with event-time constraints

impressionsWithWatermark.join(

  clicksWithWatermark,

  expr("""

    clickAdId = impressionAdId AND

    clickTime >= impressionTime AND

    clickTime <= impressionTime + interval 1 hour

    """)

)



Advanced Stateful Operations

Many usecases require more advanced stateful operations than aggregations. For 

example, you have to track sessions from data streams of events. For doing such 

sessionization, you will have to save arbitrary types of data as state, and perform 

arbitrary operations on the state using the data stream events in every trigger. Since 

Spark 2.2, this can be done using the operation mapGroupsWithState and the more 

powerful operation flatMapGroupsWithState. Both operations allow to apply user-defined 

code on grouped Datasets to update user-defined state. 



Triggers

unspecified (default micro-batch mode)

Fixed interval micro-batches

One-time micro-batch

Continuous with fixed checkpoint interval



Triggers

# Default trigger (runs micro-batch as soon as it can)

df.writeStream \

  .format("console") \

  .start()

# ProcessingTime trigger with two-seconds micro-batch interval

df.writeStream \

  .format("console") \

  .trigger(processingTime='2 seconds') \

  .start()



Triggers
# One-time trigger

df.writeStream \

  .format("console") \

  .trigger(once=True) \

  .start()

# Continuous trigger with one-second checkpointing interval

df.writeStream

  .format("console")

  .trigger(continuous='1 second')

  .start()



Continuous processing 

Default micro-batch processing engine which can achieve exactly-once guarantees but 

achieve latencies of ~100ms at best.

Continuous processing is a new, experimental streaming execution mode introduced in 

Spark 2.3 that enables low (~1 ms) end-to-end latency with at-least-once fault-tolerance 

guarantees. 



Continuous processing 
spark \

  .readStream \

  .format("kafka") \

  .option("kafka.bootstrap.servers", "host1:port1,host2:port2") \

  .option("subscribe", "topic1") \

  .load() \

  .selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)") \

  .writeStream \

  .format("kafka") \

  .option("kafka.bootstrap.servers", "host1:port1,host2:port2") \

  .option("topic", "topic1") \

  .trigger(continuous="1 second") \     # only change in query

  .start()



Continuous processing limitations

Only map-like Dataset/DataFrame operations are supported 

All SQL functions are supported except aggregation functions

Non deterministic functions not supported - current_timestamp() and current_date()



Continuous processing limitations

Continuous processing engine launches multiple long-running tasks that continuously 

read data from sources, process it and continuously write to sinks. The number of tasks 

required by the query depends on how many partitions the query can read from the 

sources in parallel. Therefore, before starting a continuous processing query, you must 

ensure there are enough cores in the cluster to all the tasks in parallel. 

There are currently no automatic retries of failed tasks. Any failure will lead to the query 

being stopped and it needs to be manually restarted from the checkpoint.
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Streaming is the future of big data
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